
Development of a Low-Latency and Real-Time
Automatic Speech Recognition System

Chee Siang Leow
University of Yamanashi
Kofu, Yamanashi, Japan

cheesiang leow@alps-lab.org

Tomoaki Hayakawa
University of Yamanashi
Kofu, Yamanashi, Japan
kurotomo@alps-lab.org

Hiromitsu Nishizaki
University of Yamanashi
Kofu, Yamanashi, Japan
hnishi@yamanashi.ac.jp

Norihide Kitaoka
Toyohashi University of Technology

Toyohashi, Aichi, Japan
kitaoka@tut.jp

Abstract—In this study, a real-time automatic speech recog-
nition (ASR) system based on the Kaldi ASR toolkit, with low-
latency and customizable models, without any internet connec-
tion, was developed. The proposed ASR system includes a voice
activity detection (VAD) module and an audio transmitter as
a front-end speech processing and a decoder for the received
audio signals. The ASR system was evaluated in terms of ASR
accuracy and speech processing speed. Consequently, the ASR
system achieved high ASR accuracy on the CSJ (Corpus of
Spontaneous Japanese) test set with super low-latency.

Index Terms—automatic speech recognition, low-latency, real-
time, stand-alone

I. INTRODUCTION

Recently, real-time automatic speech recognition (ASR)
services have been used in various applications such as smart
home devices and online conference tools. So far, real-time
ASR services, such as Google Cloud Speech-to-text API
(Google API) [1], IBM Watson Speech-to-text cloud services
[2], and Rev.ai Speech-to-text API [3] are available in the
cloud. Furthermore, we can easily use these ASR services
on various applications through the provided API. These
cloud services have achieved sufficiently high ASR accuracy
and high-speed processing of input speech. Moreover, recent
studies have focused mainly on end-to-end speech recognition
such as ESPnet [4] which shows significant results on ASR
system. However, it is well known that end-to-end system
requires more data than a deep neural network (DNN)-hidden
Markov model (HMM)-based ASR system to achieve high
performances of ASR recognition.

Kimura et al. [5] compared the ASR performance of
Japanese speech using Google API and “Kaldi” [6], an ASR
toolkit commonly used globally. This study confirmed that the
Kaldi system achieved high accuracy of speech recognition
when the training environment for acoustic and language mod-
els was closed to the evaluation environment, while the Google
API could achieved certain high recognition accuracy and
processing speed in various environments. Although Google
API was superior from a general-purpose perspective, the
experiments indicated that the Kaldi is better than Google API
at domain-adapted acoustic and language models, such as in
a spoken dialog system for a particular domain.

In this study, we reported the development and evaluation of
a stand-alone, low-latency, and relatively high-accuracy real-
time ASR system for Japanese based on the Kaldi toolkit. We
compared our ASR system with the widely used Google API.
Our ASR system has an advantage over Google API in terms

Kaldi decoding server

Trained by the CSJ recipe
l DNN (nnet3 model)
l HMM (tri4/HCLG.fst with 3-gram LM)
l ivector extractor

models

mic

online meeting tool
etc.

WAV file

talk

GStreamer

audio samples

client

ASR text

VAD

Fig. 1. System architecture of the real-time automatic speech recognition
system.

of the ability to customize acoustic and language models and
a recognition dictionary. In the experiment, we evaluated our
ASR system in terms of ASR accuracy and speed compared
with Google API on the in-domain speech recognition task.
Consequently, while our system’s ASR accuracy was exceeded
that of Google API on the CSJ test set, its speed (latency) also
exceeded that of the Google API, which requires an internet
connection.

II. REAL-TIME ASR SYSTEM

A. System Architecture

Figure 1 shows the system architecture of the developed
ASR system. The ASR system can directly recognize voice
inputted from a microphone in real-time, and it also has
functions for accepting direct input of computer audio using
file input and a virtual audio input/output device. The virtual
audio input/output allows us to realize real-time ASR for meet-
ing voices outputted from various online meeting and video
streaming tools, such as Zoom1 and YouTube. An inputted
voice is processed through VAD, and only utterance parts are
transmitted to an ASR decoder via GStreamer framework [7].

The architecture of our ASR system is a server-client model,
but the recognition server (decoder) can work either on a
computer on the Internet or a local computer. The client (front-
end) module and decoder can run on Linux, macOS, and
Windows Subsystem for Linux in Windows10; therefore, it
can work as a stand-alone system on most computers.

1https://zoom.us/

2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)

978-1-7281-9802-6/20/$31.00 ©2020 IEEE464

Fig. 2. Real-time VAD and spectrogram visualization.

B. Decoder
The GStreamer plugin, gst-kaldi-nnet2-online [8], was used

as a decoder. The detected voice is sent from the client to
the GStreamer, and the voice is sequentially converted to a
sampling frequency of 16 kHz and input to the decoder. When
the VAD at the client detects the end of an utterance, it sends
an end-of-stream signal to the GStreamer. Then, the decoding
is completed, and the final 1-best result is determined. At
this point, the GStreamer returns the information such as
recognition time, confidence level for each word, and the
length of audio that being recognized in JSON format to the
client, and the transcribed texts are displayed on the screen.
Our system did not stop on recording and decoding after the
first result been displayed; for the consideration of usage such
as lectures or conferences where the speeches can be long,
our system displayed the previous 2 results and the latest
result. The method for displaying the ASR result can be easily
changed from the front-end code, for example, by stacking all
results in a single array to be displayed.

C. VAD
The Python binding of the WebRTC VAD 2 was used in

our ASR system. Our ASR system records the audio by 1024
chunks of the selected sampling rate. The VAD uses the last
20ms speech frame from the recorded chunks of audio to
compute a result of silence or speech. We implemented the
VAD on client-side for the flexibility of various client-side
implementations such as usage on unity. The VAD is used to
determine whether to send the recorded chunks of audio; if
silence is detected, the client-side sends silence clip of audio
instead of recorded audio. If the server-side received a silent
clip, the GStreamer decoder will be silent and will not decode
the specific audio chunks. This process is used to reduce the
number of background noise to be decoded as filler.

We introduce a timeout parameter to count the number of
time of VAD being detected silent. The timeout parameter
can be used to tune how fast to finalize the decoder that is
causing performance difference of ASR results. In this study,
we set the timeout as 5, meaning if the server-side detected 5
chunks of silent audio, server-side will send the signal of EOS

2https://github.com/wiseman/py-webrtcvad

to the decoder to finalize the ASR result and the timeout will
be reset to 0. Finally, for an option, we provide a matplotlib3

based real-time VAD and spectrogram visualization to analyze
the recorded speeches (Fig.2), which is useful to analyze the
recorded speech and ASR result.

D. ASR Models and Dictionary
The acoustic model is a hybrid model comprising the

HMM and DNN. The model was trained with all speeches of
CSJ [9] except for the dialog speeches, Japanese Newspaper
Article Speech Database (JNAS) [10], Senior JNAS (S-JNAS)
[11], and Elderly Adults Read Speech Corpus [12]. The total
duration of speech data for acoustic modeling is approximately
750 h. The acoustic model was trained following the CSJ
recipe in the Kaldi toolkit. Finally, we obtained the nnet3
(TDNN, Time Deray Neural Network) [13] model and the
HMM-based WFST with the 3-gram language model.

The word 3-gram-based language model was trained from a
transcription of all the CSJ lectures and speeches and the Bal-
anced Corpus of Contemporary Written Japanese (BCCWJ)
[14]. Text sentences in these corpora are word-segmented
by a morphological analyzer MeCab with a UniDic-2.3.0
[15] dictionary before making a recognition dictionary and
training a language model. The number of words entered in
the dictionary was about 164k.

III. EXPERIMENTS

A. Evaluation Measures
We evaluated our speech recognition system based on the

following points:
• ASR accuracy (Word Error Rate, WER) on the CSJ eval3

test set,
• Real-Time Factor (RTF) and latency, and
• Effect of different microphones on WER.

B. Experimental Conditions
We evaluated our ASR system using the CSJ eval3 test

set. The ASR of the test set was performed from the speech
files and evaluated by WER. We also evaluated Google API
for the same test set for comparison. We measured our ASR

3https://matplotlib.org/

2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)

978-1-7281-9802-6/20/$31.00 ©2020 IEEE465

system’s latency by taking the difference between the time of
the end of utterances received and time that the recognition
result was confirmed. Since we do not know how the recorded
speeches are being processed by Google API, we cannot
compare the latency of the Google API ASR system with
our ASR system. We measured the RTF by measuring the
length of ASR recognition time taken from sending an audio
file to Google API cloud service to the time of the ASR result
received from Google API. Our ASR system RTF is measured
under the same condition with the Google API.

RTF is the ratio of the ASR processing time to the length
of time of the utterance audio clip y to be recognized. For the
comparison of RTF, we used a 2017 MacBook Pro (MBP) for
both ASR systems with CSJ eval3 test set. The RTF calculation
evaluated using the following Equation 1.

RTF =
time(ASR(y))

length(y)
(1)

Four type of microphones were prepared: an omnidirec-
tional Tabletop Microphone, 2017 MacBook Pro (MBP) built-
in mic., AirPods Pro from Apple Inc. (earphones with a
microphone), and Respeaker Mic Array v2.0 (4-microphones
array). Five men uttered four speeches selected from academic
lectures in CSJ, and each speech was recorded to a WAVE file
by these microphones. The recorded speeches were speech-
recognized by our ASR system and Google API. We investi-
gated how the type of microphone affected WER.

C. Normalization of Reconized Words
Since the representation of the recognized words of our ASR

system different from Google API, we normalized both the
ASR system recognized words with the following procedures
before calculating the WERs.

1) Convert alphabets to lowercase
2) Convert full-width characters to half-width characters
3) Convert digits number to kanji number
4) Remove sp symbols
5) Remove fillers
6) Remove interjection words

D. Results and Discussions
Table I shows the WERs and RTF (latency) results for the

CSJ eval3 test set. Table I indicates that our ASR system
exceeded Google API on both the WER and RTF. This is
partly due to the closed environment of acoustic and language
models. However, this result suggests that customized models
and recognition dictionaries significantly improve recognition
accuracy. Besides, in terms of recognition speed, RTF sur-
passes to the Google API because our ASR system can work
in a stand-alone operation, meaning that it does not require
internet connection. The recognition result was confirmed
within 0.5 seconds after the end of the utterance. It seems
to work much faster than the Google API sensuously.

Table II also shows WERs of utterances recorded by five
adult men using four sorts of microphones. The Google API
produced stable WERs even when the microphone changes;
however, our ASR system achieved very different WERs due
to changes in the microphone environment. Google’s model
was trained with audio recordings in various environments,

TABLE I
WERS AND RTF (LATENCY) EVALUTIONS ON THE CSJ EVAL3 TEST SET.

Google API Our ASR
WER [%] 28.16 6.45
RTF 0.324 0.167
Latency [s] — 0.436

TABLE II
WERS FOR THE FIVE SPEAKERS’ UTTERANCES RECORDED BY FOUR

TYPES OF MICROPHONES.

Mic. type Google API Our ASR
Tabletop mic. 17.65 10.78
MBP built-in mic. 11.76 9.80
AirPods Pro 14.71 19.61
Respeaker 12.75 15.69
average 14.22 13.97

making the model more robust against changes in the envi-
ronment. Therefore, we also need to train an acoustic model
using audio recorded in various environments.

IV. CONCLUSIONS

In this study, we presented and evaluated a low-latency real-
time ASR system and compared it with Google API. Our
system works with lower-latency than Google API, and the
recognition accuracy exceeded that of Google API in a closed
environment. For an option, we provided a matplotlib based
visualization on the analyzed spectrogram and VAD. Because
the extra computation could occur on visualization, the ASR
latency might be affected. The speed of visualization could be
improved by changing from matplotlib to multithread PyQT54-
based visualization. We expect to add more analyzers such
as the speech audio’s jitter, F0 frequency, shimmer, average
word-level amplitude visualization in the future. This can help
us understand more about the problems that affect the ASR
performance in real-world environments.

In the future, we plan to improve the front end of the
ASR system so that it can withstand noisy environments and
improve the acoustic model to make it more practical to use.
Furthermore, we expect to compare the latency with more ASR
systems.

ACKNOWLEDGMENT

　 This work was supported by JSPS KAKENHI Grant-
in-Aid for Scientific Research (A) Grant Number 19H01125.
Moreover, a part of this work was also supported by Hoso
Bunka Foundation.

REFERENCES

[1] Google: Speech To Text API https://cloud.google.com/speech-to-text,
Referred on 7/August/2020.

[2] IBM: Watson Speech To Text API https://www.ibm.com/cloud/
watson-speech-to-text, Referred on 7/August/2020.

[3] Rev.ai: Speech To Text API https://www.rev.ai/, Referred on 7/Au-
gust/2020.

4https://www.riverbankcomputing.com/software/pyqt/

2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)

978-1-7281-9802-6/20/$31.00 ©2020 IEEE466

[4] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. Enrique Yalta Soplin, J. Heymann, M. Wiesner, N. Chen, A. Ren-
duchintala, T. Ochiai “ESPnet: End-to-End Speech Processing Toolkit,”
Proc. of INTERSPEECH2018, 2018, pp.2207-2211.

[5] T. Kumura, T. Nose, S. Hirooka, A. Ito, “Comparison of Speech
Recognition Performance Between Kaldi and Google Cloud Speech
API,” Proc. of IIH-MSP 2018, 2018, pp.109-115.

[6] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stem-
mer, and K. Vesely, “The Kaldi Speech Recognition Toolkit,” Proc. of
ASRU 2011, 2011.

[7] GStreamer: Open Source Multimedia Framework, https://gstreamer.
freedesktop.org/, Referred on 29/June/2020.

[8] T. Alumäe, “Full-duplex Speech-to-text System for Estonian,” Human
Language Technologies - The Baltic Perspective, vol.268, 2014, pp.3-10.

[9] K. Maekawa, “Corpus of Spontaneous Japanese: Its design and evalu-
ation,” Proc. of the ISCA & IEEE Workshop on Spontaneous Speech
Processing and Recognition (SSPR 2003), pp. 7–12, 2003.

[10] K. Itou, M. Yamamoto, K. Takeda, T. Matsuoka, T. Kobayashi,
K. Shikano, and S. Itahashi, “JNAS: Japanese speech corpus for
large vocabulary continuous speech recognition research”,Journal of the
Acoustical Society of Japan 1999,volume 20,pp.199–206,

[11] S. Kiyohiro, Laboratries of Image Information Science and Technology,
Nara Institute of Science and Technology, Speech Resources Consor-
tium, “Japanese Newspaper Article Sentences Read Speech Corpus of
the Aged (S-JNAS)” http://research.nii.ac.jp/src/en/S-JNAS.html, Re-
ferred on 7/August/2020.

[12] M. Fukuda, R. Nishimura, H. Nishizaki, Y. Iribe, N. Kitaoka, “A
New Corpus of Elderly Japanese Speech for Acoustic Modeling, and
a Preliminary Investigation of Dialect-Dependent Speech Recognition,”
Proc. of O-COCOSDA, 2019, pp.1–6.

[13] V. Peddinti, D. Povey, S. Khudanpur, “A time delay neural network
architecture for efficient modeling of long temporal contexts,” Proc. of
INTERSPEECH2015, 2015, pp.3214-3218.

[14] Center for Corpus Development NINJAL, “The Balanced Corpus
of Contemporary Written Japanese (BCCWJ)” https://pj.ninjal.ac.jp/
corpus center/bccwj/en/, Reffered on 7/August/2020.

[15] Y. Den, J. Nakamura, T. Ogiso, H. Ogura. “A Proper Approach to
Japanese Morphological Analysis: Dictionary, Model, and Evaluation”,
Proc. of the sixth international conference on Language Resources and
Evaluation (LREC 2008), 2008, pp.1019-1024.

2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)

978-1-7281-9802-6/20/$31.00 ©2020 IEEE467

