
ExKaldi: A Python-based Extension Tool of Kaldi
Yu Wang, Chee Siang Leow, Hiromitsu Nishizaki

University of Yamanashi
Kofu, Yamanashi, Japan

{wangyu,cheesiang leow, nisizaki}@alps-lab.org

Akio Kobayashi
Tsukuba University of Technology

Tsukuba, Ibaraki, Japan
a-kobayashi@a.tsukuba-tech.ac.jp

Takehito Utsuro
University of Tsukuba

Tsukuba, Ibaraki, Japan
utsuro@iit.tsukuba.ac.jp

Abstract—We present ExKaldi, an automatic speech recogni-
tion (ASR) toolkit, which is implemented based on the Kaldi
toolkit and Python language. While similar Kaldi wrappers are
available, a key feature of ExKaldi is an integrated strategy to
build ASR systems, including processing feature and alignment,
training an acoustic model, training, querying N-grams language
model, decoding and scoring. Primarily, ExKaldi builds a bridge
between Kaldi and deep learning frameworks to help users
customize a hybrid hidden Markov model–deep neural network-
based ASR system. We performed benchmark experiments on the
TIMIT corpus and revealed that ExKaldi could build a system
from scratch with Python and achieved reasonable recognition
accuracy. The toolkit is open-source and released under the
Apache license.

Index Terms—automatic speech recognition, deep learning,
Kaldi, Python,

I. INTRODUCTION

In recent years, automatic speech recognition (ASR) tech-
nologies have achieved unprecedented progress. Kaldi [1], as
one of the free and open-source toolkits for ASR, plays a
remarkable role in various ASR tasks. It provides integrated,
flexible libraries and tools written in C++ language. Besides,
it also provides shell-scripts named “recipes,” which allow the
training of a variety of acoustic models.

Moreover, some open-source deep learning (DL) frame-
works, such as TensorFlow 1 and PyTorch 2, have been devel-
oped. Python language has become the mainstream of these
frameworks because of its usability and variable extension
packages for machine learning. Owing to these tools, some
excellent ASR systems, such as ESPNet [2] that adopted a
deep neural network (DNN)-based model, have been devel-
oped and gained much attention.

At present, traditional ASR systems that are a combination
of acoustic and language models are vital, especially those
based on the hybrid of hidden Markov model (HMM) and
DNN. Kaldi toolkit helps us to realize such a hybrid acoustic
model. However, it is hard to train DNN-based acoustic models
with various structures using Kaldi without specialized knowl-
edge of Kaldi and C++. Therefore, a Kaldi-based ASR system
with Python language is being demanded. Consequently, we
have developed ExKaldi―-a Python-based extension tool of
Kaldi.

Python-based wrappers of Kaldi have been released already;
PyKaldi [3] and PyKaldi2 [4] are Python wrappers of Kaldi
and open-source ASR toolkits. Unlike these two toolkits,
ExKaldi does not require users to write the code with the

1https://www.tensorflow.org/
2https://www.pytorch.org/

Kaldi command format. It is friendlier to Python programmers
than PyKaldi. Another related project is PyTorch-Kaldi [5].
However, PyTorch-Kaldi only focuses on designing and imple-
menting the DNN acoustic model with PyTorch. Torchaudio 3,
developed by the PyTorch team, has wrapped a part of Kaldi
tools but does not support training Gaussian mixture model
(GMM)-HMM model.

ExKaldi aims to help Python programmers build a Kaldi-
based integral ASR system and flexibly adjust its details to
enhance performance; it is available on GitHub 4.

II. EXKALDI DESIGN

A. Data Structures in ExKaldi

We implement three basic data structures: BytesArchive and
ListTable–designed to communicate with Kaldi–and Nump-
yArchive–contributing to DL. BytesArchive holds Kaldi binary
archive-table, such as features which need to be processed fre-
quently, and they can be obtained with both Kaldi and ExKaldi
tools. Basically, ExKaldi interacts with Kaldi compiled C++
command-line interface (CLI) through the Python subprocess
pipeline. Similar to other binary objects like the GMM-HMM
model and lattice in ExKaldi, these binary archives will be
sent to or read from standard I/O stream. Their formats can be
quickly converted between Kaldi binary archives and Python
NumPy 5 arrays. NumpyArchive also plays this role and further
supports the training of DNN model with a DL framework.
ListTable corresponds to Kaldi tables of text format. With
these three base classes, we designed a group of subclasses to
control data format and sequence strictly. They reduce much
effort to check data format in Kaldi tasks and possible buffer
costs when reading data from the stream. It enables Python
programmers to build ASR systems with ease.

B. GMM-HMM Training

ExKaldi has wrapped relatively complete tools for train-
ing standard GMM-HMM based acoustic models, including
training mono-phone GMM-HMM, decision tree, and context-
phone GMM-HMM with the extracted acoustic feature, such
as mel-frequency cepstrum coefficient (MFCC) and perceptual
linear predictive (PLP) feature. It is a key feature of ExKaldi
that differs from other Kaldi wrappers.

The standard feature optimization technologies, linear dis-
criminant analysis (LDA), and maximum likelihood linear

3https://pytorch.org/audio/
4https://github.com/wangyu09/exkaldi
5https://numpy.org/

2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)

978-1-7281-9802-6/20/$31.00 ©2020 IEEE470

transform (MLLT) are also available. In addition, ExKaldi
supports speaker adaptive training (SAT) by estimating the
feature-space maximum likelihood linear regression (fMLLR)
feature. Although all of these functions are implemented by
the Kaldi backend, ExKaldi provides a flexible interface to
train the GMM-HMM model that benefits from the excellent
interactivity of Python. During each stage of the GMM-
HMM training, users can easily tune the hyperparameters and
optimize alignment and feature.

C. DL Support
ExKaldi can quickly switch Kaldi archive-table data to

NumPy format, typically convert feature and alignment, and
use them for training DNN-based acoustic model with a DL
framework. Different categories of features and alignments
can be grouped in various ways to support multiple tasks and
generate an iterable dataset. Besides the popular probability
distribution function (PDF) IDs and phone IDs alignment,
user-defined labels like emotion and gender can also be paired
with these data. ExKaldi will split them and take turns in
loading them into the computer’s memory parallelly. It helps
to train a large-scale corpus.

D. Language Model
ExKaldi uses KenLM6 and SRILM7 as backends to train the

N-grams language model. KenLM outperforms other similar
toolkits, including SRILM, in memory management. In addi-
tion, ExKaldi supports the query and evaluation of language
models. It helps users to build a better model, and thus,
improves ASR accuracy.

In our experiment, we revealed that ExKaldi can well train
and evaluate N-grams language models on both small-sized
and large-sized text corpora.

E. Decoding and Scoring
ExKaldi provides an efficient way to manage lexicons. Vari-

ous lexicons, such as lexiconp and silence phones, are gener-
ated automatically and stored in memory. With the HMM and
language model, ExKaldi can compile the weighted finite-state
transducer (WFST) graph, and implement GMM decoding
with the feature or DNN decoding with the output probability
of DNN acoustic model. After the decoding, ExKaldi can deal
with the generated lattice to optimize ASR results. Besides
the decoding algorithm based on WFST, ExKaldi provides
basic end-to-end decoding algorithms, such as beam search &
language model, which is implemented in C++. Furthermore,
ExKaldi can evaluate the ASR system by computing the
frequently-used word error rate (WER) score or edit distance
score.

F. Parallel Processes
Although we use BytesArchive to hold binary data in mem-

ory directly in general, ArkIndexTable is a subclass for holding
the location index information and an another approach to
describe binary archives. It allows ExKaldi to handle large-
scale corpus and execute parallel processes by storing archives

6https://kheafield.com/code/kenlm
7http://www.speech.sri.com/projects/srilm/

in files and using the index table to access them. ExKaldi
provides an easy-to-use interface to call parallel processes
just by receiving multiple resources or different parameters.
In the next section, we will illustrate an example of a parallel-
process.

III. EXAMPLE CODE

example.py
import exkaldi
from exkaldi import args

args.discribe("This is an example program to \
 train a dummy monophone GMM-HMM model.")
args.add("--parallel",abbr="-p",dtype=int,default=4,
 discription="The number of parallel processes.")

Parse command-line options and take a backup for debugging.
args.parse()
args.save("conf/train_mono.args")

Extract and process feature.
feat = exkaldi.compute_mfcc(target="train/wav.scp",rate=16000)
feat = feat.add_delta(order=2)
print(feat.dim)

Prepare lexicons.
lexicons = exkaldi.decode.graph.lexicon_bank(
 pronFile="dict/pronunciation.txt",
 silWords={"sil":"sil"},
 unkSymbol={"sil":"sil"},
 optionalSilPhone="sil"
)

Make the GMM-HMM topology.
exkaldi.hmm.make_topology(lexicons=lexicons,
 outFile="dict/topo",
 numNonsilStates=3,
 numSilStates=5)

Make Lexicon fst.
exkaldi.decode.graph.make_L(lexicons=lexicons,
 outFile="dict/L.fst",
 useDisambigLexicon=False)

Initialize a monophone GMM-HMM model.
model = exkaldi.hmm.MonophoneHMM(lexicons=lexicons)
model.initialize(feat=feat,topoFile="dict/topo")
print(model.info)

Prepare transcription for training.
transcription = exkaldi.load_transcription("train/text")

when using parallel processes,
we only need to split resources into N chunks.
if args.parallel > 1:
 # Split feature.
 feat = feat.sort(by="utt").subset(chunks=args.parallel)
 # Split transcription depending on utterance IDs of feature.
 temp = []
 for f in feat:
 temp.append(transcription.subset(keys=f.utts))
 transcription = temp
else:
 feat = feat.sort(by="utt")
 transcription = transcription.sort(by="utt")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Run the training loop.
model.train(feat=feat,
 transcription=transcription,
 LFile="dict/L.fst",
 tempDir="exp/mono",
 numIters=40,
 maxIterInc=35,
 totgauss=1000,
 realignIter=[1,2,3,4,5,7,10,15,20,30]
)
print(model.info)

59
60
61
62
63
64
65
66
67
68
69
70

Fig. 1. Train a monophone GMM-HMM model with ExKaldi.

Figure 1 shows an example of a mono-phone GMM-HMM
training with ExKaldi. This script first parses the command-
line options. args has a global scope and can be saved into

2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)

978-1-7281-9802-6/20/$31.00 ©2020 IEEE471

TABLE I
PERPLEXITY OF VARIOUS LANGUAGE MODELS FOR TIMIT

N-grams
N=2 N=3 N=4 N=5 N=6

Baseline IRSTLM 14.41 — — — —
ExKaldi SRILM 14.42 13.05 13.67 14.3 14.53
ExKaldi KenLM 14.39 12.75 12.75 12.7 12.25

TABLE II
PER [%] OF VARIOUS ASR SYSTEMS FOR TIMIT

Mono Tri1 Tri2 Tri3
Baseline 2-Grams 32.54 26.17 23.63 21.54
ExKaldi 2-Grams 32.53 25.89 23.63 21.43
ExKaldi 6-Grams 29.83 24.07 22.40 20.03

or loaded from file for debugging. Then, it extracts MFCC
feature data from wav.scp file with a sampling frequency of 16
kHz. Because we did not specify the output file, the returned
object feat will be a BytesFeature object. We simply process
the features further by adding 2-order deltas. Next, we prepare
the necessary lexicons. The generated object, lexicons on line
20, is a LexiconBank object. It automatically produced about
20 lexicons according to the tasks. LexiconBank object will
play a crucial role in ExKaldi. Here, we use it to make the
GMM-HMM topology and Lexicon FST. After preparing the
transcription for training, all preparations have been made.
We can use the high-level application programming interface
(API) model.train() to run the training loop. This function
can execute parallel processes only when it receives multiple
resources. So, in this example, we split the feature and
the corresponding transcription into N parts if the argument
args.parallel is greater than 1. This step will save the trained
GMM-HMM model, generated decision tree and final align-
ment in the output directory. We can employ them to decode
or train a better model.

IV. AUTOMATIC SPEECH RECOGNITION EXPERIMENT

We evaluated the ExKaldi toolkit primarily on the TIMIT8

corpus. We used the train dataset for training and test dataset
for evaluation. The machine configuration of the CPU was
Core i7 6950X 3.0GHz; memory was 128 GB; GPU was
GeForce GTX1080Ti 11GB; and OS was Ubuntu 18.04.

Firstly, we evaluated the language models trained with three
toolkits. The Kaldi baseline built a 2-grams model with the

TABLE III
PER [%] OF TWO NEURAL NETWORK ARCHITECTURES FOR TIMIT

DNN LSTM
Kaldi Baseline 18.67 —
PyTorch-Kaldi 17.99 17.01
ExKaldi 16.23 15.11

8https://catalog.ldc.upenn.edu/LDC93S1

TABLE IV
PERPLEXITY OF VARIOUS LANGUAGE MODELS FOR CSJ

3-grams 4-grams 5-grams
Baseline SRILM 67.89 — —
ExKaldi SRILM 67.89 66.39 66.24
ExKaldi KenLM 67.51 66.02 65.90

IRSTLM9 toolkit, and we used ExKaldi to build higher-order
N-grams models with both SRILM and KenLM backends.
Table I shows the results of perplexity based on phoneme
unit. Clearly, we can see that KenLM’s 6-grams model is the
best language model in our experiment, where the score is
12.25. Next, we trained the GMM-HMM models using the
same recipe as the Kaldi baseline. We used the above best-
trained language model to compile the decoding graph. Table
II shows the phone error rates (PERs) 10 of the various ASR
systems. The best PER is 20.03% after the SAT. Based on
the experiment results, we built the DNN-HMM hybrid ASR
systems. We used the fMLLR features extracted by our toolkit
and built two sorts of neural network models: DNN model
with dense layer only and long short-term memory (LSTM)
model with TensorFlow. Using similar model structures and
hyperparameters, we compared the results of our toolkit with
those of the Kaldi baseline and the PyTorch-Kaldi toolkit. The
Kaldi baseline DNN model is Karel ’s DNN model11. The
version of the PyTorch-Kaldi toolkit is 1.0. Since the Pytorch-
Kaldi toolkit does not have tools to align data, we used the
Kaldi’s alignments of tri3 and dnn4 to train its DNN and
LSTM models, respectively. Table III lists the PERs of these
ASR systems. Owing to some advanced DL techniques like
batch normalization (BN) provided by the DL framework, we
achieved a significant improvement. After the DNN training,
we aligned the feature again and generate a better alignment.
Furthermore, using chronological information, we obtained the
best PER (PER=15.11%) with the LSTM model.

In addition, in order to assess the effectiveness of supporting
these language model toolkits on a large-sized text we used
CSJ12 corpus. We trained with train dataset and tested with
eval1 dataset. Table IV lists the perplexity scores based on
word unit. It shows that ExKaldi can well support these
toolkits.

V. CONCLUSIONS

In this paper, we proposed the ExKaldi toolkit–a Python-
based wrapper of Kaldi. We revealed that ExKaldi provides a
set of integrated tools to support GMM-HMM acoustic model,
N-grams language model, DNN-HMM acoustic model, de-
coding, and scoring. As experimental results, we successfully
built various ASR systems with the ExKaldi toolkit, and they
exhibited good performances. We will improve ExKaldi to per-

9https://hlt-mt.fbk.eu/technologies/irstlm
10In our experiment, we used the Kaldi ’s compute-wer tool to calculate

PER.
11Karel’s DNN: One of TIMIT DNN architecture. https://kaldi-asr.org/doc/

dnn1.html
12https://pj.ninjal.ac.jp/corpus center/csj

2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)

978-1-7281-9802-6/20/$31.00 ©2020 IEEE472

form online ASR in the next phase and support discriminative
training in the future.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 20H05558. Besides, a part of this work was also supported
by the Hoso Bunka Foundation.

REFERENCES

[1] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlı́ček, Y. Qian, P. Schwarz, J. Silovský, G. Stem-
mer and K. Vesel, “The Kaldi speech recognition toolkit,” Proceedings
of the IEEE 2011 Workshop on Automatic Speech Recognition and
Understanding, 2011.

[2] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen, A. Renduchintala
and T. Ochiai, “ESPnet: End-to-End Speech Processing Toolkit,” Pro-
ceedings of INTERSPEECH2018, 2018, pp.2207-2211.

[3] D. Can, V. Martinez, P. Papadopoulos and S. Narayanan, “Pykaldi: A
Python Wrapper for Kaldi,” Proceedings of ICASSP2018, 2018, pp.
5889-5893.

[4] L. Lu, X. Xiao, Z. Chen and Y. Gong, “Pykaldi2: Yet another speech
toolkit based on Kaldi and Pytorch,” reprint arXiv:1907.05955, 2019.

[5] M. Ravanelli, T. Parcollet and Y. Bengio, “The Pytorch-kaldi Speech
Recognition Toolkit,” Proceedings of ICASSP2019, 2019, pp. 6465–
6469.

2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)

978-1-7281-9802-6/20/$31.00 ©2020 IEEE473

