Metric Learning Approach for End-to-End
Multilingual Automatic Speech Recognition Model

Akihiro Dobashi
University of Yamanashi
Kofu, Yamanashi, Japan

dobashiakihiro @alps-lab.org

Abstract—This study explores the application of metric learn-
ing in an end-to-end multilingual automatic speech recognition
(ASR) model, employing the wav2vec 2.0 framework. In the
proposed method, the E2E ASR model implements metric learn-
ing by obtaining acoustic features corresponding to character
labels through forced alignment. When metric learning was
applied to a six-language E2E ASR model during training,
the model incorporating metric learning demonstrated a 0.7-
point improvement in the character error rate (from 8.4%
to 7.7%) over the baseline model, which was trained without
metric learning. Additionally, the visualization of feature vectors
indicated a decrease in both the variation of acoustic feature
vectors for individual characters and inter-character interference,
further underscoring the effectiveness of our approach.

Index Terms—automatic speech recognition, multilingual ASR,
metric learning, wav2vec 2.0

I. INTRODUCTION

In recent years, research on automatic speech recogni-
tion (ASR) systems has shifted from the Hidden Markov
Model (HMM)-Deep Neural Network (DNN) hybrid speech
recognition framework [1] to End-to-End (E2E) types. This
E2E framework is more convenient for multilingual speech
recognition models. Watanabe et al. [2] proposed a single
speech recognition model capable of recognizing 10 different
languages using a hybrid Attention/CTC framework. However,
this requires more than 1000 hours of training data, and
to prevent performance degradation for languages with large
amounts of data, it is necessary to build an ASR model
that uses linguistic information, as shown by Toshniwal [3]
et al. There have been other studies of transformer-based
multi-language ASR, but many studies have used language
identification [4].

To solve the problem of having a small amount of training
data, a model such as wav2vec 2.0 [5] has been proposed,
which uses unlabeled speech data for pre-training and labelled
speech data for fine-tuning. Wav2vec 2.0 is characterized by its
use of raw speech waveforms and incorporates self-supervised
learning in the pre-training process. By using wav2vec 2.0’s
feature extractor, which has been pre-trained on a large amount
of data, it is possible to learn a new task with a small amount of
labelled speech data for model fine-tuning. Therefore, wav2vec
2.0 is being actively considered for use in multilingual ASR
model [6].

In this paper, we introduce a novel training approach for
an E2E ASR model within the metric learning framework,
aiming to enhance the accuracy of the ASR model derived
from wav2vec2.0. Metric learning [7] effectively classifies
and clusters data by aptly defining the distance or similar-

Chee Siang Leow
University of Yamanashi
Kofu, Yamanashi, Japan

cheesiang_leow @alps-lab.org

Hiromitsu Nishizaki
University of Yamanashi
Kofu, Yamanashi, Japan
hnishi@yamanashi.ac.jp

ity among distinct data points. Our hypothesis posits that
identical characters across diverse languages should produce
comparable acoustic feature vectors. Consequently, we employ
metric learning to draw acoustic feature vectors closer when
characters are identical and to distance them when they differ.
This method seeks to augment the accuracy of a multilingual
E2E ASR model.

We investigated the efficacy of metric learning in training
a wav2vec2.0-based model. Experiments were conducted both
with and without metric learning on a six-language E2E ASR
model. Our findings suggest that the integration of metric
learning led to a 0.7-point reduction in the character error rate
across the six languages, in comparison to models without
metric learning.

II. E2E ASR MODEL WITH METRIC LEARNING
A. Model Architecture

The E2E ASR model proposed in this study is based on
wav2vec2.0, as shown in Fig.1. The wav2vec2.0 configuration
used in this study consists of seven convolutional layers and
12 transformer encoder layers. The first convolutional layer
has a kernel size of ten and a stride of five, the middle four
layers have a kernel size of three and a stride of two, and
the final two layers have a kernel size of two and a stride of
two. The GELU function is used as the activation function in
all convolutional layers. Positional Encoding is added before
the input to the transformer encoder. The number of output
dimensions for the transformer encoder layer is set to 768, the
number of multi-heads to 12, and the number of dimensions
of the feed-forward network to 3,074.

In the pre-training stage, random batches are created from
the speech data of all six languages used in this study, and the
model is trained according to the pre-training diagram shown
in Fig. 1. In the fine-tuning stage, a fully-connected layer is
added to the final layer of wav2vec 2.0, and the model is
trained using the CTC loss function. In this case, as with the
pre-training stage, random batches are created from the speech
data in the six languages, and the model is trained according
to the fine-tuning process shown in Fig. 1.

B. Applying metric learning

The summary of the metric learning proposed in this paper
is shown in Fig. 2. For the integration of metric learning,
forced alignment is a prerequisite. This alignment helps iden-
tify the sections of the speech that correspond to character
labels. However, an inadequately trained ASR model cannot
provide accurate alignment, thus necessitating sufficient model

pre-training stage

e}
c
Q
. E
wav2vec2.0 architecture g =3 9
- ©
wn
=
<
— — — —]
x = = > > > —
o el X o
S . . g g a ¢
» n » =3 -3 =3
o1 N N =S =S =S
§ N 5 N 5 N 5
o < = ~ W3 L3 Py
= 3 3 = = = > = = =
39 ..(07 ..9 3 =3 =3 =3
— S S B IS Do we a B < BEX fine-tuning stage
~ < n = N 2 ~m ~m ~m
p o o X N ~5 ~5
Q o o > [} b [} - (o]
o S Q Q o a o a o
o Pt P m 9 S a S S a
raw speech waveform o) g g > 2 B 3 5 3 0 ~
= c c =) %) ® =
= 5 > ~ ~ ~ >
L =
3
o O
W_JW_J \ J < 3
-
Y S, O = =
w
X4 X2 x 12 5 s
o
(o]
Q
[
o

Fig. 1. The model architecture

Triplet Loss CTC Loss
4 A
Metric Dense

Learning

a

A C——

Transformer
Encoder
[}
label _ k_ CNN
I forced alignment I 1
Fig. 2. ASR model training incorporating forced alignment and metric

leaning.

training to obtain correct forced alignment. Once the ASR
model achieves the necessary level of training for forced
alignment, we proceed with fine-tuning. During fine-tuning,
forced alignment helps determine the exact positions within
the speech segment where each character label was spoken.
We extract the features at these positions from the outputs of
the transformer-encoder, treating them as the required feature
vectors for character output, on which we then perform metric
learning.

When trained using the CTC loss function, the ASR model
frequently recognizes a single frame as a speech segment dur-

and parameters of wav2vec2.0.

ing alignment acquisition [8]. However, we posit that accurate
character recognition involves not just the identified frame,
but also its immediate preceding and succeeding frames. These
adjacent frames contribute significantly to the precise recogni-
tion of the character. In our proposed approach, upon obtaining
alignment, we treat a total of three frames (the identified frame,
one frame before, and one frame after) as essential features
for character output. These frames are subsequently averaged
temporally to constitute a unified feature vector.

The Triplet loss function is used for metric learning and
is combined with fine-tuning using the CTC loss function.
This method trains the transformer encoder to produce feature
vectors that are close to each other for the same character,
even when that character appears across different languages.

C. Training procedure

The model based on wav2vec2.0, necessitates initial pre-
training. During this phase, we employ a six-language speech
corpus for the pre-training process—this same corpus is
subsequently used for fine-tuning. Post pre-training, while
fine-tuning is initiated, it’s noteworthy that forced alignment
is unattainable using only the pre-trained model. As such,
we engage in fine-tuning over the six-language corpus for
500 epochs, facilitating the retrieval of forced alignment.
Upon completion, the fine-tuned model undergoes additional
refinement, integrating metric learning alongside the CTC loss.

The terminal training phase aspires for characters across
diverse languages to converge to identical feature vectors.
Given that our ASR was executed on a character-centric
basis, the number of accurate labels corresponding to a
singular speech utterance could surpass 200. This amplifies
the complexity of universally applying metric learning across

all characters and vectors within a mini-batch. Consequently,
metric learning targets merely one speech segment in a mini-
batch. Since this approach confines metric learning to a single
language, a specialized processing of the training data during
the ultimate training phase becomes imperative. In our re-
search, we manipulated training data to juxtapose two distinct
language speeches within a singular utterance, yielding code-
switched speech segments. To elaborate, pre-existing mono-
lingual speech samples were amalgamated to generate code-
switched speech. By harnessing this synthetic code-switched
speech and incorporating metric learning, we endeavored to
align characters from varied languages to analogous feature
vectors.
The CTC loss function is defined as equation 1.

Lere(S) = — Z log P(z|x) (1)

x,2€S8

The « is the input feature, z is the correct label, and S
is the union of all input features « and correct labels z used
in training. In addition, the input feature can be defined as
equation 2.

@ = Softmax(Linearp_, - (wav2vec(X))) 2)

The X represents the raw waveform to be input. Softmax(-),
Linearp_,y(.y, and wav2vec(-) are the softmax function, the
Linear layer that converts the output feature dimension D
of wav2vec2.0 to the number of correct labels V’, including
blank, and all layers of wav2vec2.0.

In this paper, Triplet loss function is used for metric
learning. Triplet loss function is defined as equation 3,

- D(xanca l‘neg) + «, 0) (3)

The D is the distance function and « is the margin value.
The acoustic feature vectors corresponding to the correct
answer labels identified by forced alignment are represented
by Tune, Tpos, and Tyeq. Here, x4y is the acoustic feature
vector corresponding to the reference character, x,s refers
to the acoustic feature vector of the same character as .,
and z,.4 refers to the acoustic feature vector of a character
different from x4,. In addition, since Zqyc, Tpos, and Ty,cq are
all features output from wav2vec 2.0, they can be expressed
as equation 4.

LTriplet = mam(D(ajanca -rpos)

Lancs xposa xneg (S W&VZVCC(X) (4)

In this paper, the margin value in the Triplet loss function
was set to 0.01. When incorporating metric learning, the loss
function for the model was defined as a combination of the
Triplet loss and CTC loss at a ratio of 500:1. Thus, the loss
function in the final training stage is expressed as equation 5.

L= LCTC + 500 x LT'riplet (5)

III. DATA SETS

The data used in the experiments of this study are shown in
Table 1. We prepared six different languages speech corpora
as follows:

o Spanish, Czech, German, and French from the Global-

Phone corpus [9]
o English from the TED-LIUM corpus [10]
o Japanese from Corpus of Spontaneous Japanese [11]

TABLE I
DATA SIZE OF TRAIN AND TEST DATA IN EACH LANGUAGE

language | train data [hours] | test data [hours] | number of characters
Czech 17.0 2.7 44

English 17.0 2.6 26

French 17.0 2.0 38

German 17.0 1.5 40

Japanese 17.0 5.1 26

Spanish 17.0 1.7 43

All lang. 102.0 15.6 66.0

In practical scenarios, the duration of training data can
differ significantly across various speech corpora. For this
study, we harmonized the training data duration for each
language to align with the German corpus, which possesses the
smallest volume at 17 hours. This alignment helped mitigate
any potential degradation in ASR performance due to data
volume discrepancies, ensuring a more precise assessment
of our proposed method’s efficacy. Moreover, we designated
characters as the unit for labels. Notably, Japanese text was
transcribed into Romaji, streamlining character compatibil-
ity across languages, effectively offering a phoneme-level
representation. Consequently, the aggregate count of distinct
characters across all languages amounted to 66.

Considering that specific models in our experiment necessi-
tate the inclusion of code-switched speech, encompassing mul-
tiple languages within a single utterance, we devised a process
for its generation. This begins by selecting a speech sample
from the aforementioned corpus, succeeded by a random
selection of a speech segment from a different language. These
two segments are then amalgamated, yielding a composite
speech sample that integrates both languages.

The character error rate (CER) is used as the measure for
evaluation. CER is defined as equation 6.

S+D+1
CEFER= —— 6
N (6)
The S is the number of substitutions, D is the number of
deletions, and I is the number of insertions. N is also the

number of characters in the reference.

1V. EXPERIMENTS
A. Model comparison

In the experiment, three models were trained as follows:

o Model (1) is trained with only CTC loss and without any
code-switched speech.

e Model (2) is trained with only CTC loss using code-
switched speech.

e Model (3) is trained with CTC and Triplet losses using
code-switched speech.

Model (1) was trained for 1,000 epochs using speech
provided by the corpus without any processing. Model (2) was
also trained for 1,000 epochs but used pseudo code-switched
speech according to the method described above. Model (3)
underwent 500 epochs of training using the same settings as
Model (1), followed by 100 epochs of fine-tuning with both the
CTC and Triplet losses. The decoding method was performed
using Greedy Search.

15 4

101

Principal Component 2
o

-10

~15 1 Q@ .

C

0 5 10 15 20
Principal Component 1

Model (3)

154

10 A

Principal Component 2
w

-10 -5 0 5 10 15 20
Principal Component 1

Model (2)

20 A

154

10 A

Principal Component 2
w

-5 4

_10 <
-10 -5 0 5 10 15 20
Principal Component 1

e a f o k o ® s o w

e b g o | p e t ® X

® cC h m e q ® u e vy

e d i n e r e Vv e z
2 j

Fig. 3. Distribution of acoustic feature vectors for each character, compressed into two dimensions by UMAP. Each character is color-coded.

B. Results and discussions

Table II shows the results of the ASR experiments. These
results utilize the weights of the model at the time when the
best results were obtained on the evaluation data during the
training of each model. Comparing Model (1) and (2), the
results for Model (2) show more than a 3% improvement in
CER for all languages compared to Model (1). The difference
between Model (1) and (2) lies in the training data; Model
(2) uses code-switched data for training. Therefore, even
with the same number of epochs, the length of speech used
per epoch exceeds 102 hours (six languages x 17 hours).
This is believed to have led to an improvement in accuracy.
Comparing Model (2) and (3), the results for Model (3) show
a 0.7% improvement in CER for all languages compared to
Model (2). When examining the results in terms of recognition
performance by language, it is evident that the proposed
method improves accuracy.

Figure 3 presents a visual representation of the acoustic
feature vectors corresponding to each character. These vectors,
derived through forced alignment, are dimensionally reduced
to a two-dimensional space using UMAP [12]. Distinct colors
denote individual characters. Though there are 66 output

TABLE 11
CERS [%] IN EACH MODEL.
Language | Model (1) Model (2) Model (3)
Czech 13.10 7.17 6.21
English 14.90 13.40 12.3
French 5.30 5.34 4.99
German 6.10 5.64 4.61
Japanese 15.90 9.95 941
Spanish 6.14 4.46 4.09
All lang. 11.70 8.41 7.71

characters for ASR as indicated in Table I, Fig. 3 specifically
highlights the 26 characters (a ~ z) that are common to
all languages. This selective representation is designed to
evaluate the influence of metric learning on these universally
shared characters. In Model (3), the distribution of feature
vectors associated with each character appears markedly more
compact, presenting minimal overlap with others compared to
the model that excludes metric learning. This observation un-
derscores that our metric learning implementation streamlines
the training of feature vectors. It efficiently clusters identical
characters while distinguishing different characters, even when

spanning multiple languages.

Based on the aforementioned findings, we can conclude that
the utilization of metric learning empowers the transformer-
encoder to extract acoustic feature vectors that are optimized
for individual characters. As a result, this optimization leads
to a notable enhancement in ASR accuracy.

V. CONCLUSIONS

In this paper, we introduced a training methodology that
incorporates metric learning for multilingual ASR, situated
within the framework of the E2E ASR model grounded
in wav2vec2.0. Metric learning requires a forced alignment
process. We applied metric learning to the acoustic feature
vectors associated with the characters of the correct labels.
Experimental outcomes from multilingual ASR revealed that
the model, integrating both the CTC loss function and metric
learning, outperformed the baseline model which solely de-
pends on the CTC loss function. Furthermore, the visualization
of feature vectors confirmed that the incorporation of metric
learning facilitates the extraction of apt feature vectors for
diverse character classifications. This insight substantiates our
assertion that metric learning significantly enhances recogni-
tion performance.

In future work, we aim to examine the efficacy of the
proposed methodology by leveraging metric learning within
a single-language ASR model.

REFERENCES

[1] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stem-
mer, and K. Vesely, “The Kaldi Speech Recognition Toolkit,” in /EEE
2011 Workshop on Automatic Speech Recognition and Understanding
(ASRU 2011), 2011.

[2] S. Watanabe, T. Hori, and J. R. Hershey, “Language independent end-
to-end architecture for joint language identification and speech recogni-
tion,” in 2017 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pp. 265-271, 2017.

[3] S. Toshniwal, T. N. Sainath, R. J. Weiss, B. Li, P. Moreno, E. Weinstein,
and K. Rao, “Multilingual speech recognition with a single end-to-end
model,” in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Fp. 4904-4908, 2018.

[4] S.Zhou, S. Xu, and B. Xu, “Multilingual end-to-end speech recognition
with a single transformer on low-resource languages,” 2018.

[51 A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “Wav2vec 2.0: A
framework for self-supervised learning of speech representations,” in
Proceedings of the 34t};J International Conference on Neural Information
Processing Systems, NIPS’20, 2020.

[6] H. Yadav and S. Sitaram, “A survey of multilingual models for auto-
matic speech recognition,” in Proceedings of the Thirteenth Language
Resources and Evaluation Conference, Ep. 5071-5079, June 2022.

[7] FE. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
géjlrzgerence on Computer Vision and Pattern Recognition (CVPR), June

[8] A. Zeyer, R. Schluter, and H. Ney, “Why does ctc result in peaky
behavior?,” ArXiv, vol. abs/2105.14849, 20%1.

[9] T. Schultz, “Globalphone: a multilingual speech and text database de-

;ilé)pggoazt karlsruhe university,” in Proceedings of ICSLP2002, pp. 345—

[10] A. Rousseau, P. Deléglise, and Y. Esteve, “Ted-lium: an automatic

speech recognition dedicated corpus,” in Proceedings of the Conference

gglganguage Resources and Evaluation (LREC2012), pp. 125-129,

[11] K. Maekawa, “Corpus of Spontaneous Japanese: Its design and evalu-
ation,” in Proceedings of the ISCA & IEEE Workshop on Spontaneous
Speech Processing and Recognition (SSPR2003), pp. 7-12, 2003.

[12] L. Mclnnes, J. Healy, N. Saul, and L. GroBberger, “Umap: Uniform
manifold agproximatlon and grojection,” Journal of Open Source Soft-
ware, vol. 3, no. 29, p. 861, 2018.

